Crystal Structure of $\mathrm{ClF}_{4}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$, Normal Coordinate Analyses of $\mathrm{ClF}_{4}^{+}, \mathrm{BrF}_{4}^{+}, \mathrm{IF}_{4}^{+}, \mathrm{SF}_{4}, \mathrm{SeF}_{4}$, and TeF_{4}, and Simple Method for Calculating the Effects of Fluorine Bridging on the Structure and Vibrational Spectra of Ions in a Strongly Interacting Ionic Solid

Karl O. Christe, ${ }^{\boldsymbol{*},{ }^{\dagger}, \ddagger}$ Xiongzhi Zhang, ${ }^{\ddagger}$ Jeffrey A. Sheehy, ${ }^{\dagger}$ and Robert Bau ${ }^{\ddagger}$
Contribution from the Propulsion Sciences and Advanced Concepts Division, Air Force Research Laboratory (AFRL/PRS), Edwards AFB, California 93524, and Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089

Received September 11, 2000. Revised Manuscript Received April 12, 2001

Abstract

The crystal structure of the $1: 1$ adduct $\mathrm{ClF}_{5} \cdot \mathrm{SbF}_{5}$ was determined and contains discrete $\mathrm{ClF}_{4}{ }^{+}$and $\mathrm{SbF}_{6}{ }^{-}$ions. The $\mathrm{ClF}_{4}{ }^{+}$cation has a pseudotrigonal bipyramidal structure with two longer and more ionic axial bonds and two shorter and more covalent equatorial bonds. The third equatorial position is occupied by a sterically active free valence electron pair of chlorine. The coordination about the chlorine atom is completed by two longer fluorine contacts in the equatorial plane, resulting in the formation of infinite zigzag chains of alternating $\mathrm{ClF}_{4}{ }^{+}$and cis-fluorine bridged $\mathrm{SbF}_{6}{ }^{-}$ions. Electronic structure calculations were carried out for the isoelectronic series $\mathrm{ClF}_{4}{ }^{+}, \mathrm{BrF}_{4}{ }^{+}, \mathrm{IF}_{4}{ }^{+}$and $\mathrm{SF}_{4}, \mathrm{SeF}_{4}, \mathrm{TeF}_{4}$ at the B3LYP, MP2, and CCSD(T) levels of theory and used to revise the previous vibrational assignments and force fields. The discrepancies between the vibrational spectra observed for $\mathrm{ClF}_{4}{ }^{+}$in $\mathrm{ClF}_{4}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$and those calculated for free $\mathrm{ClF}_{4}{ }^{+}$are largely due to the fluorine bridging that compresses the equatorial $\mathrm{F}-\mathrm{Cl}-\mathrm{F}$ bond angle and increases the barrier toward equatorial-axial fluorine exchange by the Berry mechanism. A computationally simple model, involving $\mathrm{ClF}_{4}{ }^{+}$ and two fluorine-bridged HF molecules at a fixed distance as additional equatorial ligands, was used to simulate the bridging in the infinite chain structure and greatly improved the fit between observed and calculated spectra.

Introduction

Binary halogen fluorides and their ions are ideally suited for studying molecular structures and bonding. ${ }^{1-3}$ They cover a wide range of oxidation states from +I to +VII and coordination numbers from one to eight, including many examples of hypervalent compounds. ${ }^{4}$ The following binary chlorine fluorides are known: $\mathrm{ClF}, \mathrm{ClF}_{3}$, and $\mathrm{ClF}_{5} ;{ }^{5}$ they are amphoteric and, with strong Lewis acids, they can form adducts containing the $\mathrm{Cl}_{2} \mathrm{~F}^{+},{ }^{6-8} \mathrm{ClF}_{2}{ }^{+},{ }^{9-20}$ and $\mathrm{ClF}_{4}{ }^{+21,22}$ cations, respectively.

[^0]Crystal structures, however, are known only for the $\mathrm{ClF}_{2}{ }^{+}$ salts. ${ }^{15-20}$ Although these structures confirm the predominantly ionic nature of the adducts, strong interactions between the $\mathrm{ClF}_{2}{ }^{+}$ cations and the anions were observed which result in infinite chains, distort some of the ions and complicate the vibrational spectra. Chlorine pentafluoride also forms adducts with AsF_{5} and SbF_{5}, but only the $\mathrm{ClF}_{5} \cdot \mathrm{SbF}_{5}$ complex is stable at room temperature. ${ }^{21,22}$ On the basis of their vibrational spectra, a predominantly ionic structure was proposed ${ }^{22,23}$ for the $\mathrm{ClF}_{5} \cdot$ MF_{5} adducts with $\mathrm{ClF}_{4}{ }^{+}$most likely possessing a pseudotrigonal bipyramidal structure of $C_{2 v}$ symmetry, similar to those found for isoelectronic $\mathrm{SF}_{4}{ }^{24}$ and the heavier halogen analogues $\mathrm{BrF}_{4}+25$ and $\mathrm{IF}_{4}{ }^{+} .{ }^{26,27}$ In view of the significant cation-anion interactions found for the related $\mathrm{ClF}_{2}{ }^{+}$salts, ${ }^{15-20}$ it was desirable to confirm by X-ray diffraction the postulated $C_{2 v}$ structure for ClF_{4}^{+}, to obtain its exact geometry, and to determine the nature and influence of any interionic interactions. Electronic structure calculations were used to critically examine

[^1]the previously reported crystal structures for $\mathrm{BrF}_{4}+25$ and $\mathrm{IF}_{4}{ }^{+},{ }^{26,27}$ and the vibrational spectra of theClF ${ }_{4}{ }^{+}, \mathrm{BrF}_{4}{ }^{+}$, and $\mathrm{IF}_{4}{ }^{+}$cations ${ }^{22,28}$ and of the isoelectronic $\mathrm{SF}_{4}, \mathrm{SeF}_{4}$, and TeF_{4} molecules. Furthermore, we outline a computationally simple method for modeling the influence of interionic fluorine bridging on the structure and vibrational spectra of the free ions.

Experimental Section

Crystal Structure Determination. A sample of $\mathrm{ClF}_{4}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$was prepared as previously described, ${ }^{21,22}$ and single crystals were grown from solutions in anhydrous HF. Due to the moisture sensitivity of the crystals, a suitable crystal was selected and mounted with a drop of perfluoroether oil under a flow of cold dry nitrogen. The diffraction data were collected at $-100^{\circ} \mathrm{C}$, using a Siemens/Nicolet/Syntex P21 diffractometer with Mo $\mathrm{K} \alpha$ radiation. The structure was solved by standard heavy-atom methods. The coordinates of the antimony and chlorine atoms were found from direct methods, and the atomic positions of the remaining fluorine atoms were revealed by subsequent difference Fourier maps. ${ }^{29}$

Theoretical Calculations. Theoretical calculations were carried out on IBM RS/6000 work stations using the Gaussian $98{ }^{30}$ and ACES II^{31} program systems and the density functional B3LYP ${ }^{32}$ and the correlated MP2 ${ }^{33}$ and single- and double-excitation coupled cluster methods, ${ }^{34}$ including a noniterative treatment of connected triple excitations. ${ }^{35}$
It was desirable to perform the calculations for $\mathrm{SF}_{4}, \mathrm{ClF}_{4}^{+}, \mathrm{SeF}_{4}$, $\mathrm{BrF}_{4}{ }^{+}, \mathrm{TeF}_{4}$, and $\mathrm{IF}_{4}{ }^{+}$by consistent methods. However, they involve atoms from the second, third, and fourth rows of the periodic table, and it was not clear whether a single type of atomic basis sets could be found that would give accurate results for all six compounds. Whereas there are many choices of high-quality basis sets for secondand third-row elements, the choices available for tellurium and iodine are far fewer and generally lower in quality. Consequently, several different basis sets were examined, most of which involved the use of

[^2]Table 1. Crystal Data for $\left[\mathrm{ClF}_{4}\right]^{+}\left[\mathrm{SbF}_{6}\right]^{-}$

empirical formula	$\mathrm{ClF}_{10} \mathrm{Sb}$
formula weight	347.20
temperature	$193(2) \mathrm{K}$
wavelength	$0.71073 \AA$
crystal system	orthorhombic
space group	$P b c m$ (no. 57$)$
unit cell dimensions	$a=5.9546(12) \AA ; \alpha=90^{\circ}$
	$b=15.1717(19) \AA ; \beta=90^{\circ}$
	$c=7.9598(17) \AA ; \gamma=90^{\circ}$
volume	$719.7(2) \AA^{3}$
Z	4
final R indices $[I>2 \sigma(I)]$	$\mathrm{R} 1=0.0220, \mathrm{wR} 2=0.0493$ (854 data)
R indices (all data)	$\mathrm{R} 1=0.0227, \mathrm{wR} 2=0.0496$ (880 data)

effective-core potentials for the inner-shell electrons on the central atoms. The criteria used for determining the relative suitability of the basis sets for the present purposes was how well the experimentally observed vibrational spectra of SF_{4} and SeF_{4} were reproduced by the calculations. These molecules were chosen for the basis-set study because excellent experimental data are available for a comparison with the calculated frequencies and because there are many basis set choices for sulfur and selenium. Ultimately, it was found that the best results were obtained with the so-called DFT/DZVP all-electron basis sets, ${ }^{36,37}$ supplemented with one f function taken from either the cc-pVTZ basis sets of Woon and Dunning ${ }^{38}$ (exponents: $\mathrm{S}=0.557, \mathrm{Cl}=0.706$, $\mathrm{Se}=0.462, \mathrm{Br}=0.552$) or the polarization functions of Ahlrichs ${ }^{39}$ (exponents: $\mathrm{Te}=0.474, \mathrm{I}=0.486$) on the heavy atoms, and the $6-311+G(2 d)$ basis sets of Pople ${ }^{40}$ on fluorine. The calculated Hessian matrices (second derivatives of the energy with respect to Cartesian coordinates) were converted to symmetry-adapted internal coordinates for subsequent normal coordinate analyses using the program systems GAMESS ${ }^{41}$ and Bmtrx. ${ }^{42}$

Results and Discussion

Crystal Structure of $\mathrm{ClF}_{4}{ }^{+} \mathbf{S b F}_{6}{ }^{-} . \mathrm{ClF}_{4}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$crystallizes in the orthorhombic space group Pbcm with the unit cell parameters given in Table 1. One hemisphere of data (3645 reflections) were collected at $-100{ }^{\circ} \mathrm{C}$, merged to give one unique octant of data (880 reflections), and refined to a final agreement factor of $R=2.3 \%$ for 854 reflections having $I>$ $2 \theta(I)$. The crystal and structure refinement data, atomic coordinates and isotropic displacement parameters, and selected bond distances and angles are summarized in Tables $1-3$, respectively. The structures of the $\mathrm{ClF}_{4}{ }^{+}$and $\mathrm{SbF}_{6}{ }^{-}$ions and the

[^3]Table 2. Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\mathrm{A}^{2} \times 10^{3}\right)$ for $\left[\mathrm{ClF}_{4}\right]^{+}\left[\mathrm{SbF}_{6}\right]^{-a}$

	x	y	z	$U(\mathrm{eq})$
Sb	$904(1)$	$1402(1)$	2500	$15(1)$
$\mathrm{F}(1)$	$-1565(4)$	$2191(1)$	2500	$25(1)$
$\mathrm{F}(2)$	$-1047(4)$	$445(2)$	2500	$37(1)$
$\mathrm{F}(3)$	$2845(4)$	$2392(1)$	2500	$26(1)$
$\mathrm{F}(4)$	$902(3)$	$1429(1)$	$162(3)$	$34(1)$
$\mathrm{F}(5)$	$3413(4)$	$669(1)$	2500	$33(1)$
Cl	$5883(1)$	$3440(1)$	2500	$16(1)$
$\mathrm{F}(11)$	$4042(3)$	$4140(1)$	2500	$24(1)$
$\mathrm{F}(12)$	$8045(4)$	$3987(1)$	2500	$25(1)$
$\mathrm{F}(13)$	$5900(3)$	$3496(1)$	$472(2)$	$33(1)$

${ }^{a} U(\mathrm{eq})$ is defined as one-third of the trace of the orthogonalized $U_{i j}$ tensor.

Table 3. Bond Lengths $[\AA]$ and Angles $[\mathrm{deg}]$ for $\left[\mathrm{ClF}_{4}\right]^{+}\left[\mathrm{SbF}_{6}\right]^{-}$

$\mathrm{Sb}-\mathrm{F}(2)$	$1.860(2)$
$\mathrm{Sb}-\mathrm{F}(4)$	$1.863(2)$
$\mathrm{Sb}-\mathrm{F}(5)$	$1.863(2)$
$\mathrm{Sb}-\mathrm{F}(3)$	$1.895(2)$
$\mathrm{Sb}-\mathrm{F}(1)$	$1.896(2)$
$\mathrm{Cl}-\mathrm{F}(11)$	$1.527(2)$
$\mathrm{Cl}-\mathrm{F}(12)$	$1.532(2)$
$\mathrm{Cl}-\mathrm{F}(13)$	$1.617(2)$
$\mathrm{Cl} \cdots \mathrm{F}\left(1^{*}\right)$	2.43
$\mathrm{Cl} \cdots \mathrm{F}\left(3^{*}\right)$	2.41
$\mathrm{~F}(2)-\mathrm{Sb}-\mathrm{F}(4)$	$90.97(5)$
$\mathrm{F}(4)-\mathrm{Sb}-\mathrm{F}\left(4^{*}\right)$	$177.47(9)$
$\mathrm{F}(2)-\mathrm{Sb}-\mathrm{F}(5)$	$91.99(10)$
$\mathrm{F}(4)-\mathrm{Sb}-\mathrm{F}(5)$	$90.78(5)$
$\mathrm{F}(2)-\mathrm{Sb}-\mathrm{F}(3)$	$178.95(9)$
$\mathrm{F}(4)-\mathrm{Sb}-\mathrm{F}(3)$	$89.02(5)$
$\mathrm{F}(5)-\mathrm{Sb}-\mathrm{F}(3)$	$89.06(9)$
$\mathrm{F}(2)-\mathrm{Sb}-\mathrm{F}(1)$	$90.49(11)$
$\mathrm{F}(4)-\mathrm{Sb}-\mathrm{F}(1)$	$89.18(5)$
$\mathrm{F}(5)-\mathrm{Sb}-\mathrm{F}(1)$	$177.53(9)$
$\mathrm{F}(3)-\mathrm{Sb}-\mathrm{F}(1)$	$88.47(9)$
$\mathrm{F}(11)-\mathrm{Cl}-\mathrm{F}(12)$	$103.08(12)$
$\mathrm{F}(11)-\mathrm{Cl}-\mathrm{F}(13)$	$88.16(6)$
$\mathrm{F}(12)-\mathrm{Cl}-\mathrm{F}(13)$	$88.06(6)$
$\mathrm{F}(13)-\mathrm{Cl}-\mathrm{F}\left(13^{*}\right)$	$173.92(13)$
$\mathrm{F}(11)-\mathrm{Cl} \cdots \mathrm{F}\left(3^{*}\right)$	85.4
$\mathrm{~F}(12)-\mathrm{Cl} \cdots \mathrm{F}\left(1^{*}\right)$	84.0
$\mathrm{~F}(1 *) \cdots \mathrm{Cl} \cdots \mathrm{F}\left(3^{*}\right)$	87.5

Table 4. Observed and Calculated Geometries ${ }^{a}$ of SF_{4}

	obsd b		3	calcd c	
			B3LYP	MP2	CCSD(T)
$r\left(\mathrm{~S}-\mathrm{F}_{\mathrm{eq}}\right)$	$1.545(3)$		1.579	1.563	1.563
$r\left(\mathrm{~S}-\mathrm{F}_{\mathrm{ax}}\right)$	$1.646(3)$		1.681	1.660	1.657
$\left\langle\left(\mathrm{~F}_{\mathrm{eq}}-\mathrm{S}-\mathrm{F}_{\mathrm{eq}}\right)\right.$	$101.5(5)$		101.3	101.6	101.4
$\left\langle\left(\mathrm{~F}_{\mathrm{ax}}-\mathrm{S}-\mathrm{F}_{\mathrm{ax}}\right)\right.$	$173.1(5)$	172.4	171.9	171.6	

${ }^{a}$ Bond distances in \AA, angles in degrees. ${ }^{b}$ Data from ref 24. ${ }^{c}$ The following basis set was used for all calculations: S: DFT-DZVP; F: $6-311+G(2 d)$.
numbering scheme are shown in Figure 1, while the packing diagram and the interionic fluorine bridges are depicted in Figures 2 and 3, respectively.

As can be seen from Figures 1 and 2, the structure of the $\mathrm{ClF}_{5} \cdot \mathrm{SbF}_{5}$ adduct is predominantly ionic consisting of discrete $\mathrm{ClF}_{4}{ }^{+}$cations and $\mathrm{SbF}_{6}{ }^{-}$anions in a simple packing arrangement. The structure of the $\mathrm{ClF}_{4}{ }^{+}$cation is best described as a trigonal bipyramid in which the four fluorine ligands occupy the two axial and two of the equatorial positions, while a sterically active free valence electron pair fills the third equatorial position.

Figure 1. ORTEP plot of $\mathrm{ClF}_{4}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$; thermal ellipsoids are shown at the 50% probability level.

Figure 2. Packing diagram for $\mathrm{ClF}_{4}^{+} \mathrm{SbF}_{6}{ }^{-}$.

Figure 3. Interionic fluorine bridging in $\mathrm{ClF}_{4}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$, showing the pseudo-octahedral fluorine environment around chlorine.

The coordination in the equatorial plane is completed by two fluorine bridges with two different $\mathrm{SbF}_{6}{ }^{-}$anions, resulting in infinite zigzag chains along the a-axis (see Figure 3). The two interionic fluorine bridges formed by each $\mathrm{SbF}_{6}{ }^{-}$anion are cis with respect to each other and distort the $\mathrm{SbF}_{6}{ }^{-}$octahedron from O_{h} to $C_{2 v}$ symmetry. The $\mathrm{Cl}-\mathrm{F}$ bond lengths of the two fluorine bridges, measuring 2.41 and $2.43 \AA$, respectively, are comparable to those of 2.23-2.43 \AA found for similar $\mathrm{ClF}_{2}{ }^{+}$salts ${ }^{15-20}$

Table 5. Observed and Calculated Geometries ${ }^{a}$ of SeF_{4} and TeF_{4}

	SeF_{4}				$\mathrm{TeF}_{4}{ }^{c}$ calcd d		
	obsd ${ }^{\text {b }}$	calcd^{d}					
		B3LYP	MP2	$\operatorname{CCSD}(\mathrm{T})$	B3LYP	MP2	$\operatorname{CCSD}(\mathrm{T})$
$r\left(\mathrm{X}-\mathrm{F}_{\text {eq }}\right)$	1.682(4)	1.718	1.701	1.703	1.879	1.862	1.866
$r\left(\mathrm{X}-\mathrm{F}_{\mathrm{ax}}\right)$	1.771(4)	1.805	1.784	1.784	1.939	1.924	1.926
$\left\langle\left(\mathrm{F}_{\mathrm{eq}}-\mathrm{X}-\mathrm{F}_{\mathrm{eq}}\right)\right.$	100.6(7)	100.6	101.0	100.9	103.1	101.0	101.1
$\left\langle\left(\mathrm{F}_{\mathrm{ax}}-\mathrm{X}-\mathrm{F}_{\mathrm{ax}}\right)\right.$	169.2(7)	169.2	168.1	167.5	159.4	161.2	160.5

[^4]Table 6. Observed and Calculated Geometries ${ }^{a}$ of $\mathrm{ClF}_{4}{ }^{+}$

	obsd $^{\text {b }}$	calcd, ${ }^{\text {b }}$ free $\mathrm{ClF}_{4}{ }^{+}$			predicted
	$\mathrm{ClF}_{4}^{+} \mathrm{SbF}_{6}{ }^{-}$	B3LYP	MP2	$\operatorname{CCSD}(\mathrm{T})$	free ClF_{4}^{+}
$r\left(\mathrm{Cl}-\mathrm{F}_{\mathrm{eq}}\right)$	1.530(2)	1.577	1.543	1.557	1.539
$r\left(\mathrm{Cl}-\mathrm{F}_{\mathrm{ax}}\right)$	1.618(2)	1.635	1.612	1.615	1.604
$\left\langle\left(\mathrm{F}_{\mathrm{eq}}-\mathrm{Cl}-\mathrm{F}_{\text {eq }}\right)\right.$	103.08(12)	107.8	107.1	107.7	107.7
$\left\langle\left(\mathrm{F}_{\mathrm{ax}}-\mathrm{Cl}-\mathrm{F}_{\mathrm{ax}}\right)\right.$	173.92(13)	172.2	172.3	171.4	173.0

[^5] was used for all calculations: Cl:DFT-DZVP $+\mathrm{f}(0.706)$ from cc-pVTZ; F: $6-311+G(2 d)$.
and are significantly shorter than the $\mathrm{Cl}-\mathrm{F}$ van der Waals distance of $3.15 \AA . .^{43}$ The two equatorial and the two bridging fluorines and the chlorine atoms of $\mathrm{ClF}_{4}{ }^{+}$are perfectly planar, as shown by the sum of their bond angles of 360.0° (see Table $3)$.

The geometry of $\mathrm{ClF}_{4}{ }^{+}$, given in Table 3, is in accord with the VSEPR model of molecular geometry. ${ }^{44}$ In an AX_{4} E-type species, such as $\mathrm{ClF}_{4}{ }^{+}$, the crowding of the axial positions results in longer and more ionic axial bonds, while the more repulsive electron pair domain ${ }^{45}$ of the equatorial free valence electron pair E causes compressions of the equatorial $\mathrm{F}-\mathrm{Cl}-\mathrm{F}$ angle from the ideal 120° to 103° and of the axial $\mathrm{F}-\mathrm{Cl}-\mathrm{F}$ angle from 180° to 174°.

Structure Calculations for Free Gaseous $\mathrm{ClF}_{4}{ }^{+}, \mathrm{BrF}_{4}{ }^{+}$, $\mathrm{IF}_{4}{ }^{+}$, and Isoelectronic $\mathrm{SF}_{4}, \mathrm{SeF}_{4}, \mathrm{TeF}_{4}$. Since the geometries and vibrational frequencies of $\mathrm{SF}_{4}{ }^{24,28}$ and $\mathrm{SeF}_{4}{ }^{46}$ are wellknown, these molecules were used to evaluate the quality of different basis sets at the B3LYP, ${ }^{32}$ MP2, ${ }^{33}$ and $\operatorname{CCSD}(\mathrm{T})^{34,35}$ levels of theory, with the DFT-DZVP basis ${ }^{36,37}$ giving the best results. As can be seen from Tables 4 and 5, the MP2 and $\operatorname{CCSD}(\mathrm{T})$ calculations gave almost identical results. The density functional B3LYP method duplicated best the observed bond angles, but slightly overestimated the bond lengths.

The observed and calculated geometries of $\mathrm{ClF}_{4}{ }^{+}$are summarized in Table 6. Scaling the calculated $\mathrm{Cl}-\mathrm{F}$ bond lengths with correction factors derived from the SF_{4} data of Table 4 gives for free $\mathrm{ClF}_{4}{ }^{+}$the predicted values shown in Table 6. The major discrepancies between these values and the ones, observed for $\mathrm{ClF}_{4}{ }^{+}$in solid $\mathrm{ClF}_{4}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$are the compression of the equatorial angle by about 4° and an increase in the difference between the axial and the equatorial bond lengths by about 2.3 pm in $\mathrm{ClF}_{4}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$. These changes can be attributed to the influence of the two equatorial fluorine bridges from two neighboring $\mathrm{SbF}_{6}{ }^{-}$anions. This conclusion is supported by model calculations for the bridged $\mathrm{ClF}_{4}{ }^{+}$cation (see below).

[^6]The minimum-energy structure of $\mathrm{ClF}_{4}{ }^{+}$had been disputed in several previous publications. Thus, Ungemach and Schaefer predicted, on the basis of SCF calculations with minimum and double- ζ basis sets, that $\mathrm{ClF}_{4}{ }^{+}$should be square-pyramidal. ${ }^{47}$ In a Note Added in Proof, however, they state that the inclusion of d functions resulted in a minimum-energy structure of $C_{2 v}$ symmetry with $r \mathrm{Cl}-\mathrm{F}_{\mathrm{ax}}=1.63 \AA, r \mathrm{Cl}-\mathrm{F}_{\mathrm{eq}}=1.57 \AA$, $\angle \mathrm{F}_{\mathrm{ax}}-\mathrm{Cl}-\mathrm{F}_{\mathrm{ax}}=169.6^{\circ}$, and $\angle \mathrm{F}_{\text {eq }}-\mathrm{Cl}-\mathrm{F}_{\text {eq }}=109.7^{\circ}$. The $C_{2 v}$ structure was confirmed by So. ${ }^{48}$ However, he surprisingly found that the axial bond $(1.570 \AA$) was shorter than the equatorial one ($1.632 \AA$) and his $\mathrm{F}_{\mathrm{eq}}-\mathrm{Cl}-\mathrm{Cl}-\mathrm{F}_{\text {eq }}$ bond angle of 117.42° was also very different from that given by Ungemach and Schaefer. The $C_{2 v}$ geometry given by Ungemach and Schaefer was confirmed by several subsequent studies. ${ }^{49-52}$ It was also shown ${ }^{49}$ that at the RHF/DZP level the energy difference between the minimum energy $C_{2 v}$ structure and the squarepyramidal $C_{4 v}$ structure, which represents the transition state for the equatorial-axial ligand exchange by the Berry mechanism, is only $6.7 \mathrm{kcal} \mathrm{mol}^{-1}$, while a square-planar $D_{4 h}$ structure was found to lie $59.5 \mathrm{kcal} / \mathrm{mol}$ above $C_{2 v} .{ }^{49}$ Surprisingly, however, the same study ${ }^{49}$ found that at the MP2/DZP level the $D_{4 h}$ structure becomes energetically favored over the $C_{2 v}$ structure by $16.2 \mathrm{kcal} / \mathrm{mol}$.

In our calculations, it was found that the $C_{2 v}$ structure was the minimum energy structure at the B3LYP, MP2, and CCSD(T) levels of theory with all the basis sets used. Duplication of previous computations showed that the omission of d-functions from basis sets indeed results in a square-pyramidal $C_{4 v}$ structure being the minimum. This is not surprising in view of the small energy difference of $\sim 7 \mathrm{kcal} / \mathrm{mol}$ between the $C_{2 v}$ and $C_{4 v}$ structures. However, the big change of $75.7 \mathrm{kcal} / \mathrm{mol}$ reported ${ }^{49}$ for the difference between the $C_{2 \nu}$ and $D_{4 h}$ structures on going from the RHF to the MP2 level could not be confirmed.

Table 7 gives a comparison between the observed and calculated structures of $\mathrm{BrF}_{4}{ }^{+}$and $\mathrm{IF}_{4}{ }^{+}$. For $\mathrm{IF}_{4}{ }^{+}$, the deviations between the observed and calculated values agree with those noted for $\mathrm{ClF}_{4}{ }^{+}$but are more pronounced due to increased fluorine bridging. For $\mathrm{BrF}_{4}{ }^{+}$, however, the observed bond lengths are much too long, and also the axial bond angle is too big. These large deviations, together with the extremely large uncertainties in the crystal structure of $\mathrm{BrF}_{4}{ }^{+} \mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$, ${ }^{25}$ demonstrate the need for a re-determination of its crystal structure.

Structure Calculations for Fluorine-Bridged $\mathrm{ClF}_{4}{ }^{+}$in Solid $\mathrm{ClF}_{4}{ }^{+} \mathbf{S b F}_{6}{ }^{-}$. In many predominately ionic structures,

[^7]Table 7. Observed and Calculated Geometries ${ }^{a}$ for $\mathrm{BrF}_{4}{ }^{+}$and $\mathrm{IF}_{4}{ }^{+}$

	$\mathrm{BrF}_{4}{ }^{-}$				$\mathrm{IF}_{4}{ }^{+}$			
	obsd ${ }^{\text {b }}$	calcd^{d}			obsd c	calcd^{d}		
	$\overline{\mathrm{BrF}_{4}{ }^{+} \mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}}$	B3LYP	MP2	$\operatorname{CCSD}(\mathrm{T})$	$\overline{\mathrm{IF}_{4}{ }^{+} \mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}}$	B3LYP	MP2	$\operatorname{CCSD}(\mathrm{T})$
$r\left(\mathrm{X}-\mathrm{F}_{\text {eq }}\right)$	1.77 (12)	1.700	1.672	1.683	1.77(3)	1.838	1.818	1.823
$r\left(\mathrm{X}-\mathrm{F}_{\mathrm{ax}}\right)$	1.86(12)	1.749	1.728	1.732	1.85(4)	1.875	1.861	1.863
$\left\langle\left(\mathrm{F}_{\mathrm{eq}}-\mathrm{X}-\mathrm{F}_{\mathrm{eq}}\right)\right.$	95.5(50)	105.9	104.9	105.4	92.4(12)	106.8	103.8	104.2
$\left\langle\left(\mathrm{F}_{\mathrm{ax}}-\mathrm{X}-\mathrm{F}_{\mathrm{ax}}\right)\right.$	173.5(61)	168.8	168.2	167.2	160.3(12)	158.3	161.2	160.3

${ }^{a}$ Bond distances in \AA, angles in degrees. ${ }^{b}$ Data from ref 25. ${ }^{c}$ Averaged bond lengths from ref 27. ${ }^{d}$ The following basis sets were used for all calculations: Br: DFT-DZVP $+\mathrm{f}(0.552)$ from cc-pVTZ; I: DFT-DZVP $+\mathrm{f}(0.486) ; \mathrm{F}:-311+\mathrm{G}(2 \mathrm{~d})$.

Table 8. Geometries ${ }^{a}$ of $\mathrm{ClF}_{4}^{+} \cdot 2 \mathrm{HF}$ and Free ClF_{4}^{+}Compared to That of $\mathrm{ClF}_{4}{ }^{+}$in $\mathrm{ClF}_{4}{ }^{+} \mathrm{SbF}_{6}$

	calculated, ${ }^{b} \mathrm{~B} 3 \mathrm{LYP}$		
	free $\mathrm{ClF}_{4}{ }^{+}$	$\mathrm{ClF}_{4}{ }^{+} \cdot 2 \mathrm{HF}$	
$\mathrm{ClF}_{4}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$			
$\left(\mathrm{Cl}-\mathrm{F}_{\mathrm{eq}}\right)$	1.577	1.582	$1.530(2)$
$\left(\mathrm{Cl}-\mathrm{F}_{\mathrm{ax}}\right)$	1.635	1.653	$1.618(2)$
$\left(\mathrm{F}_{\mathrm{eq}}-\mathrm{Cl}-\mathrm{F}_{\mathrm{eq}}\right)$	107.8	100.8	$103.08(12)$
$\left(\mathrm{F}_{\mathrm{ax}}-\mathrm{Cl}-\mathrm{F}_{\mathrm{ax}}\right)$	172.2	172.8	$173.92(13)$

${ }^{a}$ Bond distances in \AA, angles in degrees. ${ }^{b}$ The same basis set as in Table 6 was used. ${ }^{c}$ Data from this study.
consisting of coordination-wise unsaturated cations and saturated fluoro- or oxofluoro-anions, strong fluorine bridging is observed between the anions and cations. These fluorine bridges fill empty coordination sites of the cation and, at the same time, lower the symmetry of the anions. These effects profoundly influence the vibrational spectra of these compounds. They give rise to additional bands in the anion spectra due to the symmetry lowering from O_{h} to $C_{2 v}$ and create new vibrations due to the bridge bonds. Although the existence of these bridges has been well established through crystal structure studies, their influence on the vibrational spectra has previously not been analyzed in sufficient detail, and as a result, the vibrational assignments of the bridging modes have in most cases either been ignored or been poor guesses. This is not surprising because the cations generally form multiple fluorine bridges with different partners, thus resulting in difficult-to-analyze infinite chains. To circumvent this problem, most previous investigators have limited their analyses to symmetry lowering of the individual ions, followed by a factor group analysis. Whereas this approach is not unreasonable for the anions, because their coordination number remains the same and their geometry does not change dramatically, it accounts neither for the structural changes in the cation nor for the newly generated bridging modes.

One possible approach to duplicate the $\mathrm{ClF}_{4}{ }^{+}$and $\mathrm{SbF}_{6}{ }^{-}$ environments in the infinite zigzag chain involves the calculation of the tri-nuclear segments (1) and (2), using the observed $\mathrm{Cl}--\mathrm{F}$ bridge distances as the only constraints and forcing the $\mathrm{Sb}-\mathrm{F}_{6}, \mathrm{Sb}-\mathrm{F}_{7}, \mathrm{Sb}-\mathrm{F}_{12}$, and $\mathrm{Sb}-\mathrm{F}_{13}$ distances to be equal, while the remaining parameters are optimized. This approach, however, still presents the following major problems. (i) Charge neutralization and chain termination become issues. In structure 1, the $\mathrm{ClF}_{4}{ }^{+}$cation effectively becomes a polyanion; in structure 2, two F^{-}ions, $\mathrm{F}_{6}{ }^{-}$and $\mathrm{F}_{6}{ }^{-}$, must be added to maintain the overall negative charge and the correct coordination around the chlorine atoms but result in computationally unstable configurations that want to lose fluoride ions. (ii) Even with density functional methods and limited basis sets, the required computational effort is still large, and a vibrational analysis is complicated.

These problems were overcome in the following manner. Replacement of the two terminal $\mathrm{SbF}_{6}{ }^{-}$anions in $\mathbf{1}$ by neutral

hydrogen fluoride molecules $\mathbf{3}$ maintains the positive charge of $\mathrm{ClF}_{4}{ }^{+}$and greatly simplifies the calculation, while simulating well the two covalently bound, bridging fluorine ligands which were again constrained to the observed $\mathrm{Cl}-\mathrm{F}$ bond distance of 2.43 Å.

In Table 8, the geometries calculated for $\mathrm{ClF}_{4}{ }^{+} \cdot 2 \mathrm{HF}$ and free $\mathrm{ClF}_{4}{ }^{+}$at the B3LYP/B4 level are compared to that observed for $\mathrm{ClF}_{4}{ }^{+}$in $\mathrm{ClF}_{4}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$. As can be seen, the equatorial ClF_{2} bond angle in $\mathrm{ClF}_{4}{ }^{+} \cdot 2 \mathrm{HF}$ decreases strongly from free $\mathrm{ClF}_{4}{ }^{+}$, and the axial bond length increases, as expected for an increased ligand crowding in the equatorial plane due to the fluorine bridges. Furthermore, the bond length difference between equatorial and axial bonds increases from free $\mathrm{ClF}_{4}{ }^{+}$to $\mathrm{ClF}_{4}{ }^{+}$. 2HF. All of these changes are in the same direction, as observed for $\mathrm{ClF}_{4}{ }^{+}$in $\mathrm{ClF}_{4}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$and confirm that the discrepancies between the calculated geometry of free $\mathrm{ClF}_{4}{ }^{+}$and the observed geometry of $\mathrm{ClF}_{4}{ }^{+}$in solid $\mathrm{ClF}_{4}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$are mainly due to fluorine bridge bonds and not to computational shortcomings.

A comparison of the calculated geometries of $\left[\mathrm{SbF}_{6}-\mathrm{ClF}_{4}-\right.$ $\left.\mathrm{SbF}_{6}\right]^{-}$and free ClF_{4}^{+}shows that the more rigorous treatment of doubly bridged ClF_{4}^{+}as a trinuclear segment results in similar, although more pronounced trends. Thus, on going from free $\mathrm{ClF}_{4}{ }^{+}$to $\left[\mathrm{SbF}_{6}-\mathrm{ClF}_{4}-\mathrm{SbF}_{6}\right]^{-}, r(\mathrm{ClFax}), r(\mathrm{ClFeq})$ and $\angle\left(\mathrm{FaxClF}_{\mathrm{ax}}\right)$ increased by $4.5 \mathrm{pm}, 2.7 \mathrm{pm}$, and 1.1°, respectively, while \angle (FeqClFeq) was compressed by 12.1°. It therefore

Table 9. Observed and Scaled (Unscaled) Calculated Vibrational Frequencies of SF_{4}

species approx mode description			frequencies, cm^{-1}			
			obsd $^{\text {b }}$	calcd c		
				B3LYP	MP2	$\operatorname{CCSD}(\mathrm{T})$
A_{1}	ν_{1}	v sym $\mathrm{SF}_{2} \mathrm{eq}$	892	889 (856) [117, 14p] ${ }^{d}$	887 (904) [125, 12p]	881 (900) [120]
	ν_{2}	ν sym SF ${ }_{2} \mathrm{ax}$	558	557 (537) [3.1, 12p]	558 (569) [3.2, 12p]	561 (573) [3.4]
	ν_{3}	sym comb of δ sciss SF_{2} eq and ax	532	537 (494) [22, 2.1p]	539 (531) [26, 1.7p]	538 (533) [26]
	ν_{4}	asym comb of δ sciss SF_{2} eq and ax	228	226 (208) [1.2, 51p]	226 (223) [1.0, 40p]	226 (224) [.89]
A_{2}	ν_{5}	$\tau \mathrm{SF}_{2}$	475	473 (435) [0, 1.2dp]	471 (464) [0, 1.0dp]	470 (465) [0]
B_{1}	ν_{6}	v as $\mathrm{SF}_{2} \mathrm{ax}$	730	741 (714) [659, 1.1bp]	739 (753) [693, 1.2dp]	740 (756) [680]
	ν_{7}	δ rock $\mathrm{SF}_{2} \mathrm{eq}$	[$\sim 532]^{e}$	540 (497) [.21, .54dp]	539 (531) [.43, .53dp]	538 (533) [.85]
B_{2}	ν_{8}	v as $\mathrm{SF}_{2} \mathrm{eq}$	867	858 (827) [187, 5.0dp]	862 (879) [196, 4.3dp]	862 (881) [184]
	ν_{9}	δ sciss $\mathrm{SF}_{2} \mathrm{ax}$ out of plane	353	354 (326) [12, 0.1dp]	353 (348) [13, .0.6dp]	356 (352) [14]
sum of (v obsd $\pm v$ calcd)				34	32	45
empirical scaling factors:				1.03798	0.98080	. 97866
				1.08696	1.01559	1.01008

${ }^{a}$ Separate empirical scaling factors were used for the stretching and deformation vibrations to maximize the fit between observed and calculated frequencies. ${ }^{b}$ Data from ref $28 .{ }^{c}$ Using basis set from Table 4. ${ }^{d}$ Calculated infrared and Raman intensities in $\mathrm{km} / \mathrm{mol}$ and \AA^{4} / amu. ${ }^{e}$ This band coincides with and is obscured by ν_{3}.

Table 10. Observed and Scaled (Unscaled) Calculated ${ }^{a}$ Vibrational Frequencies of $\mathrm{ClF}_{4}{ }^{+}$

${ }^{a}$ Using basis set from Table 6. ${ }^{b}$ Observed relative infrared and Raman intensities. ${ }^{c}$ Calculated infrared and Raman intensities in km/mol and $\AA^{4} / \mathrm{amu} .{ }^{d} v_{4}$ was omitted from the calculation of the scaling factors for the deformation modes.

Figure 4. Observed (a) and calculated (b) structures of $C_{2 v}$ distorted $\mathrm{SbF}_{6}{ }^{-}$.
appears that the simplified model with HF bridging groups approximates the binding in $\mathrm{ClF}_{4} \mathrm{SbF}_{6}$ better than the more elaborate tri-nuclear model.

Modeling the $\mathrm{SbF}_{6}{ }^{-}$distortion was simpler. The only constraint imposed on $\mathrm{SbF}_{6}{ }^{-}$was forcing the two equatorial $\mathrm{Sb}-\mathrm{F}$ bonds that are involved in the cis-fluorine bridging to be 3 pm longer than the two axial $\mathrm{Sb}-\mathrm{F}$ bonds (the same amount as that observed in the crystal structure) and allowing the rest of the structure to maximize. The resulting structure is compared in Figure 4 to that observed for the crystal structure of $\mathrm{ClF}_{4}-$ SbF_{6}. The calculated structure exhibits angle changes, similar to but less pronounced than those observed for $\mathrm{SbF}_{6}{ }^{-}$in $\mathrm{ClF}_{4}{ }^{-}$ SbF_{6}. This can be attributed to the fact that in the calculated structure the $\mathrm{Sb}-\mathrm{F}$ bonds trans to the fluorine bridges also become somewhat longer (trans-effect), and therefore, the angle deviations from 90° become smaller.

Vibrational Spectra. $\mathbf{S F}_{4}$. The observed and unscaled and scaled calculated vibrational spectra of SF_{4} are listed in Table 9. The scaled B3LYP, MP2, and $\operatorname{CCSD}(\mathrm{T})$ frequencies fit about equally well, but the MP2 and $\operatorname{CCSD}(\mathrm{T})$ sets require less scaling.

The assignment of the vibrational spectra of SF_{4} on the basis of experimental data alone had been a most difficult and frustrating task and required at least 13 publications from several different laboratories. ${ }^{28}$ Despite all of this previous work, our present study reveals that even in the most recent reassignment ${ }^{28}$ there are still two errors. The infrared inactive Raman band observed at $475 \mathrm{~cm}^{-1}$ must be $v_{5}\left(\mathrm{~A}_{2}\right)$, and the infrared inactive $v_{7}\left(\mathrm{~B}_{1}\right)$ Raman band should occur at about $540 \mathrm{~cm}^{-1}$ and is apparently hidden by the two very intense Raman bands, $v_{2}\left(\mathrm{~A}_{1}\right)$ and $v_{3}\left(\mathrm{~A}_{1}\right)$ at 558 and $532 \mathrm{~cm}^{-1}$, respectively. This reassignment results in an excellent fit between observed and calculated spectra, particularly if it is kept in mind that no anharmonicity corrections have been applied to the observed frequencies.
$\mathrm{ClF}_{4}{ }^{+}$. Table 10 compares the vibrational frequencies calculated for free gaseous $\mathrm{ClF}_{4}{ }^{+}$to those observed for solid $\mathrm{ClF}_{4}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$. As expected, the agreement is not as good as for isoelectronic SF_{4} where gas phase values were compared. However, the agreement is still very satisfactory and shows that the previously proposed ${ }^{22}$ assignments are correct. As for SF_{4}, the MP2 set gives the best frequency fit, and the $\operatorname{CCSD}(\mathrm{T})$ set requires the least scaling. The agreement between the observed

Table 11. Scaled (Unscaled) Vibrational Frequencies of Free Gaseous $\mathrm{ClF}_{4}{ }^{+}$and $\mathrm{ClF}_{4}{ }^{+} \cdot 2 \mathrm{HF}$, Calculated at the B3LYP Level, Compared to Those Observed for $\mathrm{ClF}_{4}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$

${ }^{a}$ Empirical scaling factors to maximize the fit. ${ }^{b}$ The two $\mathrm{Cl}-\mathrm{F}$ contacts between $\mathrm{ClF}_{4}{ }^{+}$and 2 HF were constrained to $2.42 \AA$, the observed $\mathrm{Cl}-\mathrm{F}$ bridge distance in $\mathrm{ClF}_{4}{ }^{+} \mathrm{SbF}_{6}{ }^{-} .{ }^{c}$ This mode couples with the symmetric ClF_{2} bridge stretching mode as a symmetric and an antisymmetric combination of the corresponding symmetry coordinates. The listed frequency of $206 \mathrm{~cm}^{-1}$ is the average of the calculated values of 185 and $227 \mathrm{~cm}^{-1}$ (see Table 12).
and the calculated MP2 values is better than $16 \mathrm{~cm}^{-1}$ for all modes, except for $v_{4}\left(\mathrm{~A}_{1}\right)$ where the discrepancy of $69 \mathrm{~cm}^{-1}$ is huge. This mode represents the anti-symmetric combination of the axial and the equatorial scissoring motions (4) and is

responsible for the inversion of the axial and the equatorial ligands by the Berry pseudorotation mechanism. ${ }^{54}$ As was pointed out already above and is also transparent from structure 1, the two equatorial fluorine bridges impede these motions and thereby increase the frequency of this mode and raise the barrier to the equatorial-axial ligand exchange in the solid.

The influence of the fluorine bridges in solid $\mathrm{ClF}_{4}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$ on the vibrational frequencies of $\mathrm{ClF}_{4}{ }^{+}$was modeled, as described above for the geometries, at the B3LYP level with two bridging HF ligands. The results are summarized in Table 11 and show that the large discrepancy of $85 \mathrm{~cm}^{-1}$ between the calculated frequency of v_{4} for free $\mathrm{ClF}_{4}{ }^{+}$and the observed one in $\mathrm{ClF}_{4}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$is indeed due to the fluorine bridging. For the bridged $\mathrm{ClF}_{4}{ }^{+} \cdot 2 \mathrm{HF}$ model, the discrepancy between the calculated and the observed frequencies of v_{4} shrinks to $13 \mathrm{~cm}^{-1}$, and the fit of the remaining eight frequencies was also greatly improved by $46 \mathrm{~cm}^{-1}$. This result demonstrates that typical fluorine bridges, as encountered in many main group fluoride salts, cannot be ignored in a thorough analysis, and that our simple model of using HF to replace large counterions and infinite chains is well suited for simulating the observed frequencies.

As pointed out above, most previous analysis had failed to correctly identify and assign the fluorine-bridging modes in the infinite-chain, fluorine-bridged salts. Table 12 summarizes the results from our normal coordinate analysis of $\mathrm{ClF}_{4}+\cdot 2 \mathrm{HF}$. As a nine-atomic species, it has 21 normal modes. Of these, six are associated with hydrogen motions (see footnote a) of Table 12) and are of little interest for our analysis, because hydrogen has been used only as a simulator for an SbF_{5} group and the

[^8]Table 12. Calculated Unscaled Fluorine Bridge Modes in $\mathrm{ClF}_{4}{ }^{+} \cdot 2 \mathrm{HF}^{a}$

		approximate mode description in symmetry $\mathrm{C}_{2 \mathrm{v}}$	B3LYP freq [IR, Ra int]
A_{1}	$v_{1}{ }^{\prime}$	antisymmetric and symmetric combinations of the symmetric $\mathrm{ClF}_{2 \mathrm{BR}}$ stretch and the $\mathrm{ClF}_{4}{ }^{+}$ Berry mode v_{4}	$\left\{\begin{array}{l} 227[0.96, .92 \mathrm{p}] \\ 185[1.0,2.5 \mathrm{p}] \end{array}\right.$
	$v_{2}{ }^{\prime}$	δ sciss $\mathrm{ClF}_{2 \mathrm{BR}}$	62 [3.2, .48p]
A_{2}	$v_{3}{ }^{\prime}$	δ pucker	$55[0,1.2 \mathrm{dp}]$
B_{1}	v_{4},	Srock $\mathrm{ClF}_{2 \mathrm{BR}}$	71 [49, 1.6dp]
B_{2}	$\nu_{5}{ }^{\prime}$	vas $\mathrm{ClF}_{2 \mathrm{BR}}$	$178[11, .97 \mathrm{dp}]$
	$v_{6}{ }^{\prime}$	¢as $\mathrm{ClF}_{2 \mathrm{BR}}$ in plane	132 [0.2, .02dp]

${ }^{a}$ In addition to these six modes, the following six modes were identified which involve hydrogen displacements: $3951, \nu \mathrm{H}-\mathrm{F}$, inphase; $3947, \nu \mathrm{H}-\mathrm{F}$, out-of-phase; 308, δ wag H, in-phase; 301, δ wag H, out-of-phase; -83 , δ rock H, out-of-phase; -38 , δ rock H, in-phase.
$\mathrm{Sb}-\mathrm{F}$ modes are already included in the analysis of the $\left(C_{2 v}\right)$ $\mathrm{SbF}_{6}{ }^{-}$ion. It should be noted that the two rocking modes involving the hydrogen atoms have imaginary frequencies because constraining the $\mathrm{Cl}-\mathrm{F}$ bridge bond length to the observed value resulted in a maximized geometry that is not a global minimum. The remaining 15 modes can be separated into nine fundamentals for $\mathrm{ClF}_{4}{ }^{+}$(see Table 11) and six fundamentals for the fluorine bridges (see Table 12). The six fundamentals for the fluorine bridge modes are highly characteristic, except for the symmetric $\mathrm{ClF}_{2 \mathrm{BR}}$ mode, $v_{1}{ }^{\prime}\left(\mathrm{A}_{1}\right)$, which strongly couples with the Berry mode, $v_{4}\left(\mathrm{~A}_{1}\right)$, of $\mathrm{ClF}_{4}{ }^{+}$(see footnote c of Table 11), due to their similar motions and frequencies. These mixings of the S 3 and S 4 symmetry coordinates of $\mathrm{ClF}_{4}{ }^{+}$and of S 4 of $\mathrm{ClF}_{4}{ }^{+}$with S^{\prime} of fluorinebridged $\mathrm{ClF}_{4}{ }^{+}$account for most of the difficulties encountered with attempts to fit the observed vibrational spectra with less

Table 13. Observed and Scaled ${ }^{a}$ (Unscaled) Calculated Vibrational Frequencies $\left(\mathrm{cm}^{-1}\right)$ of SeF_{4} and TeF_{4}

vibration b	SeF_{4}				TeF_{4}			
	obsd	calcd			obsd	calcd		
		B3LYP	MP2	CCSD(T)		B3LYP	MP2	$\operatorname{CCSD}(\mathrm{T})$
$\begin{array}{lll}\mathrm{A}_{1} & v_{1} \\ & \nu_{2} \\ & v_{3} \\ & v_{4}\end{array}$	744	743(723)[60,16p] ${ }^{\text {c }}$	740(761)[63,15p]	736(754)[59]	695	680(674)[56,16p]	681(704)[59]	680(102)[57]
	574	581(565)[1.7,14p]	579(596)[0.94,14p]	580(595)[0.75]	572	572(567)[0.02,12p]	570(590)[0]	570(589)[0.07]
	367	369(339)[25,1.2p]	370(366)[30,1.1p]	372(369)[31]	293	294(271)[33,0.96p]	297(291)[39]	297(291)[40]
	162	169(155)[1.6,0.58wp]	168(166)[1.4,0.50p]	167(165)[1.4]	-	107(99)[1.1,0.38wp]	125(122)[0.9]	125(122)[0.9]
$\mathrm{A}_{2} \quad \nu_{5}$	374	372(342)[0,1.6dp]	373(369)[0,1.4dp]	372(367)[0]	-	323(298)[0,1.3dp]	313(307)[0]	312(305)[0]
$\begin{array}{lll}\mathrm{B}_{1} & \nu_{6} \\ & \nu_{7}\end{array}$	634	635(618)[378,0.73dp]	636(654)[392,0.92dp]	637(653)[381]	588	606(600)[257,1.8dp]	607(628)[275]	607(627)[268]
	409	407(374)[10,1.0dp]	407(402)[15,0.95dp]	400(405)[16]	333	332(306)[15,0.84dp]	329(322)[19]	328(321)[20]
$\begin{array}{lll}\mathrm{B}_{2} & \nu_{8} \\ & \nu_{9}\end{array}$	733	724(705)[117,5.6dp]	729(750)122,5.0dp]	730(748)[114]	682	676(670)[104,5.9dp]	677(700)[104]	678(700)[101]
	256	248(228)[14,0.02dp]	247(244)[14,0.02dp]	249(246)[15]	-	222(205)[14,0]	199(195)[15]	199(195)[15]
$\Sigma \Delta(v$ obsd $\pm v$ calcd $)$		39	36	43		41	48	49
empirical scaling factors	v	1.02765	0.97188	0.97557		1.00947	0.9668	0.96831
	δ	1.08754	1.01176	1.01176		1.08471	1.02055	1.02213

${ }^{a}$ Empirical scaling factors. ${ }^{b}$ The approximate mode description is identical to that given in Table 9. ${ }^{c}$ Infrared and Raman intensities in $\mathrm{km} / \mathrm{mol}$ and \AA^{4} / AMU, respectively.

Table 14. Observed and Scaled ${ }^{a}$ (Unscaled) Calculated Vibrational Frequencies (cm^{-1}) of $\mathrm{BrF}_{4}{ }^{+}$and $\mathrm{IF}_{4}{ }^{+}$

vibration ${ }^{\text {b }}$	BrF_{4}^{+}				$\mathrm{IF}_{4}{ }^{+}$		
	obsd	calcd			calcd		
		B3LYP	MP2	$\operatorname{CCSD}(\mathrm{T})$	B3LYP	MP2	$\operatorname{CCSD}(\mathrm{T})$
A_{1}	723	718(721)[23,21p]	729(783)[31,13p]	708(738)[21]	(716)[25,20p]	(757)[30,17p]	(740[24]
	606	622(625)[2,18p]	612(658)[1.5,14p]	623(650)[0.94]	(650)[0.02,16p]	(673)[0.0007,16p]	(667)[0.005]
	369	366(351)[21,1.5p]	368(385)[25,1.1p]	368(377)[25]	(295)[28,1.1p]	(311)[32,0.97p]	(313)[33]
		137(131)[0.71,0.97wp]	141(147)[0.7,8p]	139(143)[0.62]	(97)[0.6,0.58wp]	(119) $[0.56,0.52 \mathrm{p}]$	(134)[0.61]
$\mathrm{A}_{2} \quad v_{5}$	385	388(372)[0,2.5dp]	386(403)[0,2.3dp]	$386(396)[0]$	(332)[0,2.1dp]	(339)[0,1.9dp]	(336)[0]
B_{1}	736	730(733)[253,0.16dp]	716(769)[272,0.3dp]	731(762)[242]	(709)[179,1.1dp]	(734)[202,0.9dp]	(732)[186]
		414(397)[12,1.4dp]	411(430)[16,1.3dp]	410(420)[16]	(333)[15, 1.1dp]	(351)[19,1.2dp]	(353)[19]
B_{2}	736	729(732)[68,5.6dp]	743(798)[86,3.4dp]	737(768)[59]	(734)[68,5.7dp]	(773)[71,4.9dp]	(758)[57]
		272(261)[13,0.06dp]	262(274)[14,0.04dp]	269(276)[14]	(237)[13, 0.0007 dp$]$	(220)[14,0.009dp]	(215)[14]
$\Sigma \Delta(v$ obsd $\pm v$ calcd $)$		40	41	40			
empirical scaling factors	v	. 99548	0.93128	0.95905			
	δ	1.04311	0.95689	0.97550			

${ }^{a}$ Empirical scaling factors. ${ }^{b}$ The approximate mode description is identical to that given in Table 9.
rigorous analyses. Inspection of Tables 11 and 12 demonstrates that the bridging modes in $\mathrm{ClF}_{4}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$occur below $230 \mathrm{~cm}^{-1}$ and, therefore, interfere only with the lowest-frequency mode of $\mathrm{ClF}_{4}{ }^{+}$. Since most of the bridging modes of solid $\mathrm{ClF}_{4}+\mathrm{SbF}_{6}{ }^{-}$ occur in the range of the lattice modes, reliable observation and analysis of these modes are presently not possible.
SeF_{4}. Table 13 shows a comparison of the observed and calculated vibrational frequencies of free gaseous SeF_{4}. The listed observed frequencies are the gas-phase values, ${ }^{55,56}$ except for that of ν_{9} which was observed only as a very weak and broad band. ${ }^{55}$ For this mode the averaged frequency of the molecule isolated in different matrices ${ }^{55}$ was used. As in the case of gaseous SeF_{4} (Table 9), the agreement between observed and calculated frequencies is excellent, and for the MP2 set, the scaling factors are also close to unity. These results lend strong support to our revised assignments given in Table 13. Of the previous assignments, only those given by Alexander and Beattie for six of the modes ${ }^{56}$ are correct. In the paper by Ramaswamy, ${ }^{57}$ seven of the nine fundamentals were assigned incorrectly; in the study by Adams and Downs, ${ }^{55}$ six fundamentals were assigned correctly, two were assigned incorrectly, and one was missing; and in the most recent study by Seppelt of SeF_{4} in $\mathrm{CH}_{3} \mathrm{~F}$ solution, ${ }^{58}$ only four of the nine fundamentals

[^9]were assigned correctly, and the latter assignments unfortunately have found their way into recent compilations, such as the book by Nakamoto. ${ }^{59}$
TeF_{4}. The observed and calculated vibrational frequencies of TeF_{4} are compared in Table 13. Since TeF_{4} is polymeric at room temperature, ${ }^{60}$ the frequencies of matrix-isolated $\mathrm{TeF}_{4}{ }^{55}$ were used as the experimental values. The agreement between observed and calculated frequencies and infrared intensities is again very good, and the scaling factors are similar to those used for SeF_{4}. Our results confirm the experimental frequencies but show that the previous assignments ${ }^{55}$ for $v_{3}\left(\mathrm{~A}_{1}\right)$ and $v_{7}\left(\mathrm{~B}_{1}\right)$ must be reversed.
$\mathrm{BrF}_{4}{ }^{+}$and $\mathrm{IF}_{4}{ }^{+}$. The calculated vibrational frequencies for free gaseous $\mathrm{BrF}_{4}{ }^{+}$and $\mathrm{IF}_{4}{ }^{+}$are summarized in Table 14. Only partial experimental values are given for $\mathrm{BrF}_{4}{ }^{+}$, and no values are given for $\mathrm{IF}_{4}{ }^{+}$because the reported spectra for these two cations are incomplete, their crystal structures are poorly determined, and fluorine bridging is expected to become more pronounced with increasing atomic weights of the halogen central atoms. Clearly, both cations should be thoroughly reinvestigated.
$\boldsymbol{C}_{2 v}$ Distorted $\mathbf{S b F}_{6}{ }^{-}$. To judge the influence of fluorine bridging on the vibrational spectra of $\mathrm{SbF}_{6}{ }^{-}$, the spectra of octahedral $\mathrm{SbF}_{6}{ }^{-}$and of $C_{2 v}$ distorted $\mathrm{SbF}_{6}{ }^{-}$were calculated at the B3LYP level. For $\left(O_{h}\right) \mathrm{SbF}_{6}{ }^{-}, r$ was found to be $1.923 \AA$, and for $\left(C_{2 v}\right) \mathrm{SbF}_{6}{ }^{-}$the geometry given in Figure 4 b was used.

[^10]Table 15. Correlation Diagram for $\mathrm{SbF}_{6}^{-}\left(O_{h} \rightarrow C_{2 v}\right)$ and Unscaled Frequencies, Infrared and Raman Intensities, and Polarization of Raman Bands Calculated at the B3LYP Level

O_{h}		$\mathrm{C}_{2 \mathrm{v}}$
$609[0,24 p] \mathrm{A}_{19}$	A_{1}	$612[18,19 p]$
$552[0,2.9 \mathrm{dp}] \mathrm{E}_{\mathrm{S}}<$	$\begin{aligned} & \mathrm{A}_{1} \\ & \mathrm{~B}_{2} \end{aligned}$	$\begin{aligned} & 557[3.3,5.0 \mathrm{p}] \\ & 538[3.4,2.9 \mathrm{dp}] \end{aligned}$
$647[647,0] F_{1 u}<$	$\begin{aligned} & \mathrm{A}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~B}_{2} \end{aligned}$	$\begin{aligned} & 635[163,2.7 \mathrm{p}] \\ & 674[182, .0001 \mathrm{dp}] \\ & 633[181, .04 \mathrm{dp}] \end{aligned}$
294[63, 0] $\mathrm{F}_{1 u}<$	$\begin{aligned} & \mathrm{A}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~B}_{2} \end{aligned}$	$\begin{aligned} & 286[64,0014 \mathrm{p}] \\ & 287[63, .0015 \mathrm{dp}] \\ & 286[64,0] \end{aligned}$
$268[0,1.5 \mathrm{dp}] \mathrm{F}_{2 \mathrm{~g}}<$	A_{1} $\mathrm{~A}_{2}$ $\mathrm{~B}_{1}$	$\begin{gathered} 256[.04,1.5 \mathrm{dp}] \\ 264[0,1.5 \mathrm{dp}] \\ 264[.05,1.5 \mathrm{dp}] \end{gathered}$
$174[0,0] \mathrm{F}_{2 u} \quad<$	A_{1} A_{2} B_{2}	$\begin{aligned} & 166[.09,0] \\ & 171[0,0] \\ & 166[.09,0] \end{aligned}$

Table 16. Scaled $\operatorname{CCSD}(\mathrm{T})$ Force Constants and Potential Energy Distribution of SF_{4}

calcd freq, ${ }^{a}$ cm^{-1}		symmetry force constants ${ }^{\text {b }}$				potential energy ${ }^{c}$ distribution (\%)
		F_{11}	F_{22}	F_{33}	F_{44}	
A_{1}	$\nu_{1} 881 \mathrm{~F}_{11}$	5.40				60(1), 4(2), 15(3), 21(4)
	$\nu_{2} 561 \mathrm{~F}_{22}$. 78	3.81			90(2), 10(1)
	$\nu_{3} 538 \mathrm{~F}_{33}$. 19	-0.01	1.22		55(4), 41(3), 3(1)
	$\nu_{4} 226 \mathrm{~F}_{44}$. 45	-0.10	. 60	1.49	59(3), 41(4)
A_{2}	$\nu_{5} 470 \mathrm{~F}_{55}$	1.97				100(5)
B_{1}	$v_{6} 740 \mathrm{~F}_{66}$	$\begin{aligned} & \mathrm{F}_{66} \\ & 2.99 \end{aligned}$	F_{77}			74(6), 26(7)
B_{2}	$\nu_{7} 538 \mathrm{~F}_{77}$	0.74	2.19			96(7), 4(6)
	$\nu_{8} 862 \mathrm{~F}_{88}$	$\begin{aligned} & \mathrm{F}_{88} \\ & 5.01 \end{aligned}$	F_{99}			89(8), 11(9)
	$\nu_{9} 356 \mathrm{~F}_{99}$. 56	1.98			100(9)

${ }^{a}$ Frequencies from Table 9. ${ }^{b}$ Stretching force constants in mdyn/ \AA, deformation constants in mdyn \AA / rad^{2}, and stretch-bend interaction constants in mdyn/rad. Scaling factors: stretching force constants, $(0.97866)^{2}$; deformation constants, $(1.01008)^{2}$; stretch-bend interactions, $0.97866 \times 1.01008 .{ }^{c}$ The following symmetry coordinates were used: $\mathrm{S} 1=\nu$ sym eq; $\mathrm{S} 2=\nu$ sym ax; $\mathrm{S} 3=\delta$ sym eq; $\mathrm{S} 4=\delta$ sym ax; $\mathrm{S} 5=\tau ; \mathrm{S} 6=\nu$ as ax; S7 $=\delta$ rock eq; S8 $=v$ as eq; S9 $=\delta$ sciss ax out-of-plane.

The calculated vibrational spectra are summarized in Table 15 and show that even relatively small distortions of about 0.15° for some of the angles and of about $0.03 \AA$ for some of the bonds cause significant changes in the vibrational spectra and, particularly, in the stretching modes. A detailed analysis of the $\mathrm{SbF}_{6}{ }^{-}$part in the previously reported ${ }^{22}$ spectra of $\mathrm{ClF}_{4}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$ was not carried out due to complications caused by the presence of some $\mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$bands and an overlap with at least three fundamentals of $\mathrm{ClF}_{4}{ }^{+}$, although the observed spectra ${ }^{22}$ appear to support the above conclusions.

Normal Coordinate Analyses. Normal coordinate analyses were carried out for the two isoelectronic series $\mathrm{SF}_{4}, \mathrm{SeF}_{4}, \mathrm{TeF}_{4}$ and $\mathrm{ClF}_{4}{ }^{+}, \mathrm{BrF}_{4}^{+}, \mathrm{IF}_{4}{ }^{+}$. The results are summarized in Tables $16-21$ and show that the A_{2}, B_{1}, and B_{2} vibrations are highly characteristic for all six compounds. For the A_{1} block, however, strong mixing of the symmetry coordinates is observed. As previously discussed for $\mathrm{ClF}_{4}{ }^{+},{ }^{23} \mathrm{SF}_{4},{ }^{23,53}$ and $\mathrm{PF}_{4}{ }^{-},{ }^{61}$ the ν_{3} and v_{4} deformation modes are symmetric and anti-symmetric

Table 17. Scaled $\operatorname{CCSD}(T)$ Force Constants and Potential Energy Distribution of SeF_{4}

${ }^{a}$ Frequencies from Table 13. ${ }^{b, c}$ Force constant dimensions and symmetry coordinates are identical to those given in the footnotes of Table 16. Scaling factors - stretching force constants, $(0.97557)^{2}$; deformation constants, (1.01281) $)^{2}$: stretch - bend interaction, 0.97557 $\times 1.01281$.

Table 18. Scaled $\operatorname{CCSD}(\mathrm{T})$ Force Constants and Potential Energy Distribution of TeF_{4}

calcd freq, ${ }^{\text {a }}$ cm^{-1}				symmetry force constants ${ }^{\text {b }}$				potential energy ${ }^{c}$ distribution (\%)
				F_{11}	F_{22}	F_{33}	F_{44}	
A	ν_{1}	680	F_{11}	4.52				90(1), 7(2), 2(3), 2(4)
	ν_{2}	570	F_{22}	0.23	3.69			93(2), 7(1)
	ν_{3}	297	F_{33}	-0.076	-0.039	. 76		53(4), 47(3)
	ν_{4}	125	F_{44}	. 17	-0.19	. 48	. 84	52(3), 46(4)
A_{2}	ν_{5}	312	F_{55}	1.22				100(5)
				F_{66}	F_{77}			
B_{1}	ν_{6}	607	F_{66}	3.25				98(6), 2(7)
	ν_{7}	328	F_{77}	0.20	1.37			100(7)
				F_{88}	F_{99}			
B_{2}	ν_{8}	678	F_{88}	4.40				99(8), 1(9)
	ν_{9}	199	F_{99}	. 15	1.12			100(9)

${ }^{a}$ Frequencies from Table 13. ${ }^{\text {b,c }}$ Force constant dimensions and symmetry coordinates are identical to those given in the footnotes of Table 16. Scaling factors - stretching force constants, $(0.96831)^{2}$; deformation constants, (1.02213) $)^{2}$: stretch -bend interaction, 0.96831 $\times 1.02213$.

Table 19. Scaled CCSD (T) Force Constants and Potential Energy Distribution of $\mathrm{ClF}_{4}{ }^{+}$

calcd freq, ${ }^{\text {a }}$ cm^{-1}		symmetry force constants ${ }^{\text {b }}$				potential energy ${ }^{c}$ distribution (\%)
		F_{11}	F_{22}	F_{33}	F_{44}	
A_{1}	$\nu_{1} 774 \mathrm{~F}_{11}$	4.46				58(1), 5(2), 16(3), 21(4)
	$\nu_{2} 583 \mathrm{~F}_{22}$. 47	3.97			87(2), 11(1), 1(3), 1(4)
	$\nu_{3} 508 \mathrm{~F}_{33}$. 020	-0.027	. 73		62(4), 34(3), 4(1)
	$v_{4} 159 \mathrm{~F}_{44}$	46	-0.018	. 60	1.35	69(3), 30(4)
A_{2}	$v_{5} 488 \mathrm{~F}_{55}$	2.01				100(5)
		F_{66}	F_{77}			
B_{1}	$v_{6} 833 \mathrm{~F}_{66}$	3.89				77(6), 23(7)
	$\nu_{7} 533 \mathrm{~F}_{77}$	0.69	2.21			98(7), 2(6)
		F_{88}	F99			
B_{2}	$\nu_{8} 810 \mathrm{~F}_{88}$	4.53				89(8), 11(9)
	$\nu_{9} 379 \mathrm{~F}_{99}$. 69	2.03			100(9)

${ }^{a}$ Frequencies from Table 10. ${ }^{\text {b,c }}$ Force constant dimensions and symmetry coordinates are identical to those given in the footnotes of Table 16. Scaling factors - stretching force constants, $(0.97457)^{2}$; deformation constants, $(0.99788)^{2}$: stretch-bend interaction, 0.97457 $\times 0.99788$.
combinations of the S3 and S4 symmetry coordinates, respectively. The ν_{3} mode is the umbrella deformation, and v_{4} is the equatorial-axial ligand-exchange motion involved in the Berry pseudorotation mechanism. ${ }^{54}$ In addition to this mixing of the

[^11] Schrobilgen, G. J.; Wilson, W. W. J. Am. Chem. Soc. 1994, 116, 2850.

Table 20. Scaled CCSD(T) Force Constants and Potential Energy Distribution of BrF_{4}^{+}

$\underset{c^{-1}}{\text { calcd freq },}{ }^{a}$				symmetry force constants ${ }^{\text {b }}$				potential energy ${ }^{c}$ distribution (\%)
				F_{11}	F_{22}	F_{33}	F_{44}	
A	ν_{1}	708	F_{11}	4.68				84(1), 7(2), 4(3), 5(4)
	ν_{2}	623	F_{22}	. 15	4.40			91(2), 9(1)
	ν_{3}	368	F_{33}	-0.009	. 012	. 70		60(4), 40(3)
	v_{4}	139	F_{44}	. 27	-0.11	. 49	. 98	62(3), 38(4)
A_{2}	v_{5}	386	F_{55}	1.48				100(5)
				F_{66}	F_{77}			
B_{1}	v_{6}	731	F_{66}	4.12				93(6), 7(7)
	ν_{7}	410	F_{77}	. 35	1.65			100(7)
				F_{88}	F99			
B_{2}	ν_{8}		F_{88}	4.74				97(8), 3(9)
	ν_{9}	269	F_{99}	. 36	1.44			100(8)

${ }^{a}$ Frequencies from Table 14. ${ }^{b, c}$ Force constant dimensions and symmetry coordinates are identical to those given in the footnotes of Table 16. Scaling factors - stretching force constants, $(0.95905)^{2}$; deformation constants, $(0.97550)^{2}$: stretch-bend interaction, 0.95905 $\times 0.97550$.

Table 21. Scaled $\operatorname{CCSD}(\mathrm{T})$ Force Constants and Potential Energy Distribution of $\mathrm{IF}_{4}{ }^{+}$

	calcd freq, ${ }^{\text {a }}$ cm^{-1}			symm	try force	consta	ants ${ }^{\text {b }}$	
				F_{11}	F_{22}	F_{33}	F_{44}	distribution (\%)
A_{1}	ν_{1}	710	F_{11}	5.01				92(1), 5(2), 1(3), 2(4)
	ν_{2}	640	F_{22}	. 056	4.59			95(2), 5(1)
	v_{3}	307	F_{33}	. 011	. 046	. 73		57(4), 43(3)
	ν_{4}	131	F_{44}	. 23	-0.088	. 46	. 87	43(4), 57(3)
A_{2}	v_{5}	329	F_{55}	1.30				100(5)
				F_{66}	F_{77}			
B_{1}	v_{6}	703	F_{66}	4.32				98(6), 2(7)
	ν_{7}	345	F_{77}	. 23	1.37			100(7)
				F_{88}	F_{99}			
B_{2}	ν_{8}	728	F_{88}	5.07				99(8), 1(9)
	ν	211	F_{99}	. 24	1.19			100(9)

${ }^{a}$ Empirical scaling factors of 0.96 and 0.98 were used for the stretching and deformation modes, respectively. ${ }^{b, c}$ Force constant dimensions and symmetry coordinates are identical to those given in the footnotes of Table 16. Scaling factors - stretching force constants, $(0.96)^{2}$; deformation constants, $(0.98)^{2}$: stretch-bend interaction, 0.96×0.98.

Table 22. Stretching Force Constants (mdyn/A) of $\mathrm{ClF}_{4}{ }^{+}$and SF_{4} Compared to Those of $\mathrm{PF}_{4}{ }^{-}, \mathrm{SeF}_{4}, \mathrm{TeF}_{4}, \mathrm{BrF}_{4}{ }^{+}$, and $\mathrm{IF}_{4}{ }^{+}$

	PF_{4}^{-}	SF_{4}	SeF_{4}	TeF_{4}	ClF_{4}^{+}	BrF_{4}^{+}	IF_{4}^{+}
fr, eq	3.94	5.21	4.79	4.46	4.50	4.77	5.04
frr	.26	.20	.10	.06	-0.035	-0.03	-0.03
fR, ax	1.82	3.40	3.53	3.47	3.93	4.26	4.46
fRR	.34	.41	.36	.22	.04	.14	.14
fR + fr	5.76	8.61	8.32	7.93	8.43	9.03	9.50
fR $/ \mathrm{fr}$.46	.65	.74	.78	.87	.89	.88

deformation modes, ν_{1} which is mainly equatorial stretching, contains strong contributions from S3 and S4 that decrease with increasing mass of the central atom.

The force constants of greatest interest are the internal equatorial and axial stretching force constants (see Table 22 and Figure 5). The data show that the force constants of the axial bonds $(f R)$ are significantly smaller than those of the equatorial bonds ($f r$). This fact is in accord with the corresponding bond lengths and can be explained by strong contributions from semi-ionic, 3 center-4electron bonding ${ }^{63-65}$ to the axial bonds. The extent of semi-ionic bonding in the XF_{4} molecules

[^12]

Figure 5. Stretching-force constants of the axial and equatorial bonds in the isoelectronic $\mathrm{SF}_{4}, \mathrm{SeF}_{4}, \mathrm{TeF}_{4}$ (solid lines) and $\mathrm{ClF}_{4}^{+}, \mathrm{BrF}_{4}^{+}, \mathrm{IF}_{4}^{+}$ (broken lines) series.
can be judged from $f R / f r$, the ratio of the axial force constant divided by the equatorial force constant, and ideally should approach 0.5 , as shown for $\mathrm{PF}_{4}^{-}(f R / f r=0.46)$.

For the $\mathrm{ClF}_{4}^{+}, \mathrm{BrF}_{4}^{+}, \mathrm{IF}_{4}^{+}$series, the overall bond strength, $(f R+f r)$, increases from ClF_{4}^{+}to IF_{4}^{+}, and the ratio of semiionic to covalent bonding, (fR/fr), is practically constant. Therefore, the slopes of the two $\mathrm{XF}_{4}{ }^{+}$curves in Figure 5 are positive and very similar. For the $\mathrm{SF}_{4}, \mathrm{SeF}_{4}, \mathrm{TeF}_{4}$ series, the overall bond strength is opposite. They decrease from SF_{4} to TeF_{4}, while the contribution from semi-ionic bonding increases from TeF_{4} to SF_{4}, thus accounting for the negative slope of $f r$ and the larger differences between $f r$ and $f R$. On going from ClF_{4}^{+}to PF_{4}^{-}the contribution from semi-ionic 3c-4e bonding strongly increases. This can be attributed mainly to the increasing formal negative charge that favors the formation of semiionic bonds. The increasing contribution of semi-ionic bonding from TeF_{4} to SF_{4} can be explained by the different axial F-X-F bond angles. Semi-ionic bonds are ideally linear as they involve only one p-orbital of the central atom, and the axial bond angle increases significantly from TeF_{4} to SF_{4} (see Tables 4 and 5). There must be an opposite effect, however, that is most pronounced for the $\mathrm{XF}_{4}{ }^{+}$cations, as the contribution from semiionic bonding remains almost constant in spite of changes in the axial bond angles similar to those in the neutral XF_{4} series. This difference is attributed to the increased effective electronegativity of the central atom that is most pronounced for the $\mathrm{XF}_{4}{ }^{+}$cations. Among these isoelectronic terafluorides, the central atoms in the $\mathrm{XF}_{4}{ }^{+}$cations possess the highest electronegativities and the highest oxidation state of $(+\mathrm{V})$, and a decreasing difference in the effective electronegativities between the central atom and the ligands favors covalent over semiionic bonding. These results demonstrate that care must be exercised when comparing trends within an isoelectronic series.

Another important point must be made concerning the force fields. In all of the previously published force fields, the value of F_{44}, the axial, in-plane bending force constant, had been badly underestimated by about 50% due to the undetermined nature of the previous A_{1} block force constant solutions and the tempting low frequencies of v_{4}. The high values, found for F_{44} in this study, are in much better agreement with the welldetermined ${ }^{62}$ value of F_{99}, the axial out-of-plane bending force constant. On the basis of Gillespie's model of points of equal repulsion on a sphere, ${ }^{43}$ the values of F_{44} and F_{99} should be of similar magnitude.

Conclusions

This paper provides the first comprehensive and conclusive study of the $\mathrm{ClF}_{5} \cdot \mathrm{SbF}_{5}$ adduct. It shows that $\mathrm{ClF}_{5} \cdot \mathrm{SbF}_{5}$ is ionic, containing discrete $\mathrm{ClF}_{4}{ }^{+}$and $\mathrm{SbF}_{6}{ }^{-}$ions that are interconnected and distorted by fluorine bridges. The $\mathrm{ClF}_{4}{ }^{+}$cation has a
pseudotrigonal bypyramidal structure, in accord with the VSEPR predictions ${ }^{43,44}$ and the known structure of isoelectronic $\mathrm{SF}_{4}{ }^{24}$ The results of this study are supported by electronic structure calculations for the $\mathrm{ClF}_{4}{ }^{+}, \mathrm{BrF}_{4}{ }^{+}, \mathrm{IF}_{4}{ }^{+}$and the isoelectronic $\mathrm{SF}_{4}, \mathrm{SeF}_{4}, \mathrm{TeF}_{4}$ series. They permit a reassignment of the observed vibrational spectra and an analysis of their trends. Our results also show that the previously reported experimental structures and vibrational analyses of $\mathrm{BrF}_{4}{ }^{+}$and $\mathrm{IF}_{4}{ }^{+}$are inaccurate or incomplete and need to be repeated. Furthermore, it is shown that in these compounds fluorine bridging strongly distorts the individual ions. A simple method for modeling this bridging is described and can account for most of the differences
between the experimental geometry and vibrational spectra of $\mathrm{ClF}_{4}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$and those predicted for the free isolated ions.

Acknowledgment. We thank the National Science Foundation and the Air Force Office of Scientific Research for financial support.

Supporting Information Available: Tables of structure determination summary, atomic coordinates, bond lengths and angles and anisotropic displacement parameters of $\mathrm{ClF}_{4} \mathrm{SbF}_{6}$ in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

[^13]
[^0]: ${ }^{\dagger}$ Air Force Research Laboratory.

 * University of Southern California
 (1) Christe, K. O. Proceedings from the XXIVth Int. Congr. Pure Appl. Chem. [Proc.] 1974, 4, 115.
 (2) Christe, K. O.; Wilson, W. W.; Drake, G. W.; Dixon, D. A.; Boatz, J. A.; Gnann, R. Z. J. Am. Chem. Soc. 1998, 120, 4711.
 (3) Christe, K. O.; Curtis, E. C.; Dixon, D. A. J. Am. Chem. Soc. 1993, 115, 1520.
 (4) Musher, J. L. Angew. Chem., Int. Ed. Engl. 1968, 8, 54.
 (5) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements; Pergamon Press: Oxford, 1986; pp 964-978.
 (6) Christe, K. O.; Sawodny, W. Inorg. Chem. 1969, 8, 212.
 (7) Gillespie, R. J.; Morton, M. J. Inorg. Chem. 1970, 9, 811.
 (8) Frenking, G.; Koch, W. Inorg. Chem. 1990, 29, 4513.
 (9) Seel, F.; Detmer, O. Angew. Chem. 1958, 70, 163; Z. Anorg. Allg. Chem. 1959, 301, 113.
 (10) Bartlett, N.; Lohmann, D. H. J. Chem. Soc. 1962, 5253.
 (11) Selig, H.; Shamir, J. Inorg. Chem. 1964, 3, 294.
 (12) Christe, K. O.; Pavlath, A. V. Z. Anorg. Allg. Chem. 1965, 335, 210.
 (13) Christe, K. O.; Sawodny, W. Inorg. Chem. 1967, 6, 313.
 (14) Gillespie, R. J.; Morton, M. J. Inorg. Chem. 1970, 9, 616.
 (15) Edwards, A. J.; Sills, R. J. C. J. Chem. Soc. A 1970, 2697.
 (16) Lynton, H.; Passmore, J. Can. J. Chem. 1971, 49, 2539.
 (17) Antipin, M. Yu.; Ellern, A. M.; Sukhoverkhov, V. F.; Struchkov, Yu. T.; Buslaev, Yu. A. Russ. J. Inorg. Chem. 1988, 33, 171.

[^1]: (18) Ellern, A. M.; Antipin, M. Yu.; Sharabarin, A. V.; Struchkov, Yu. T. Russ. J. Inorg. Chem. 1991, 36, 1278.
 (19) Bougon, R.; Cicha, W. V.; Lance, M.; Neublat, L.; Nierlich, M.; Vigner, J. Inorg. Chem. 1991, 30, 102.
 (20) Ellern, A. M.; Antipin, M. Yu.; Sharabarin, A. V.; Struchkov, Yu. T. Russ. J. Inorg. Chem. 1992, 37, 46.
 (21) Christe, K. O.; Pilipovich, D. Inorg. Chem. 1969, 8, 391.
 (22) Christe, K. O.; Sawodny, W. Inorg. Chem. 1973, 12, 2879.
 (23) Christe, K. O.; Curtis, E. C.; Schack, C. J.; Cyvin, S. J.; Brunvoll,
 J.; Sawodny, W. Spectrochem. Acta, Part A 1976, 36, 1141.
 (24) Tolles, W. M.; Gwinn, W. D. J. Chem. Phys. 1962, 36, 1119.
 (25) Lind, M. D.; Christe, K. O. Inorg. Chem. 1972, 11, 608.
 (26) Baird, H. W.; Giles, H. F. Acta Crystallogr. 1969, A25, 115.
 (27) Edwards, A. J.; Taylor, P. J. Chem. Soc., Dalton Trans. 1975, 2174.

[^2]: (28) Sawodny, W.; Birk, K.; Fogarasi, G.; Christe, K. O. Z. Naturforsch. 1980, 35B, 1137 and references therein.
 (29) Sheldrick, G. M. Programs SHELX L86 and SHELX L93, University of Goettingen, Germany.
 (30) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, R. E.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.6; Gaussian, Inc.: Pittsburgh, PA, 1998.
 (31) Stanton, J. F.; Gauss, J.; Watts, J. D.; Nooijen, M.; Oliphant, N.; Perera, S. A.; Szalay, P. G.; Lauderdale, W. J.; Gwaltney, S. R.; Beck, S.; Balkova, A.; Bernholdt, D. E.; Baeck, K. K.; Rozyczko, P.; Sekino, H.; Hober, C.; Bartlett, R. J. ACES II, Quantum Theory Project; University of Florida: Integral packages included are VMOL (Almlof, J.; Taylor, P. R.), BPROPS (Taylor, P. R.), and ABACUS (Helgaker, T.; Jensen, H. J. Aa.; Jorgensen, P.; Olsen, J.; Taylor, P. R.)
 (32) The B3LYP functional uses a three-parameter exchange functional of Becke (B3) [Becke, A. D. J. Chem. Phys. 1993, 98, 5648; Stephens, P. J.; Devlin, C. F.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623] and the Lee, Yang, and Parr (LYP) correlation gradient-corrected functional [Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785].
 (33) (a) Pople, J. A.; Binkley, J. S.; Seeger, R. Int. Quantum Chem. 1976, 10, 1. (b) Bartlett, R. J.; Silver, D. M. Int. Quantum Chem. 1975, 9, 183. (c) Dupuis, M.; Chin, S.; Marquez, A. In Relativistic and Electron Correlation Effects in Molecules; Malli, G., Ed.; Plenum: New York, 1994. (d) Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 275. (e) Bartlett, R. J.; Stanton, R. J. Applications of post-HartreeFock methods: A Tutorial. Reviews of Computational Chemistry; In Lipkowitz, K. B., Boyd, D. B., Eds.; VCH Publishers: New York, 1994; Vol. V.
 (34) Purvis, G. D., III; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910.
 (35) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157, 479.

[^3]: (36) These local-spin-density-optimized Gaussian basis sets were developed by Nathalie Godbout and Jan Andzelm and are made available courtesy of Cray Research, Inc. The general method by which they were developed is given in: Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. Can. J. Chem. 1992, 70, 560.
 (37) Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database Version, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352, U.S.A., and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multiprogram laboratory operated by Battelle Memorial Institue for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830. Contact David Feller or Karen Schuchardt for further information.
 (38) (a) Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 98, 1358. (b) Wilson, A. K.; Woon, D. E.; Peterson, K. A.; Dunning, T. H., Jr. J. Chem. Phys. 1999, 110, 7667.
 (39) Polarization functions are unpublished supplements to the basis sets described in: Schafer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829.
 (40) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265.
 (41) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347.
 (42) Komornicki, A. Bmtrx, Version 2.0; Polyatomics Research Institute: Redwood City, CA 1996.

[^4]: ${ }^{a}$ Bond distances in \AA, angles in degrees. ${ }^{b}$ Data from ref $46 .{ }^{c} \mathrm{TeF}_{4}$ is polymeric under normal conditions (ref 60) and no experimental structure for free TeF_{4} is presently known. ${ }^{d}$ The following basis sets were used for all calculations: Se: DFT-DZVP $+\mathrm{f}(0.462)$; Te:DFT-DZVP $+\mathrm{f}(0.474)$; F: 6-311 $+\mathrm{G}(2 \mathrm{~d})$.

[^5]: ${ }^{a}$ Bond distances in \AA, angles in degrees. ${ }^{b}$ The following basis set

[^6]: (43) Bondi, A. J. Phys. Chem. 1964, 68, 441.
 (44) Gillespie, R. J.; Hargittai, I. The VSEPR Model of Molecular Geometry; Allyn and Bacon: Boston, 1991; p 55.
 (45) Gillespie, R. J.; Robinson, E. A. Angew. Chem., Int. Ed. Engl. 1996, 35, 5, 495.
 (46) Bowater, I. C.; Brown, R. D.; Burden, F. R. J. Mol. Spectrosc. 1968, 28, 454.

[^7]: (47) Ungemach, S. R.; Schaefer, H. F., III. J. Am. Chem. Soc. 1976, 98 , 1658; Chem. Phys. Lett. 1976, 38, 407.
 (48) So, S.-P. J. Chem. Soc., Faraday Trans. 2 1981, 77, 213.
 (49) Pershin, V. L.; Boldyrev, A. I. J. Mol. Struct. (THEOCHEM) 1987, 150, 171.
 (50) Minyaev, R. M. Russ. J. Inorg. Chem. 1993, 38, 1300.
 (51) Minyaev, R. M.; Wales, D. J. J. Chem. Soc., Faraday Trans. 1994, 90, 1831.
 (52) Schleyer, P.v. R.; Mauksch, M. Private communication.

[^8]: (53) Christe, K. O.; Sawodny, W.; Pulay, P. J. Mol. Struct. 1974, 21, 158.
 (54) Berry, R. S. J. Chem. Phys. 1960, 32, 933.

[^9]: (55) Adams, C. J.; Downs, A. J. Spectrochim. Acta 1972, 28A, 1841.
 (56) Alexander, L. E.; Beattie, I. R. J. Chem. Soc., Dalton Trans. 1972, 1745.
 (57) Ramaswamy, K.; Jayaraman, S. Ind. J. Pure Appl. Phys. 1970, 8, 625.
 (58) Seppelt, K. Z. Anorg. Allg. Chem. 1975, 416, 12.

[^10]: (59) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed.; John Wiley \& Sons: New York, 1997. (60) Edwards, A. J.; Hewaidy, F. I. J. Chem. Soc. A 1968, 3977.

[^11]: (61) Christe, K. O.; Dixon, D. A.; Mercier, H. P. A.; Sanders, J. P. C.;

[^12]: (62) Christe, K. O.; Willner, H.; Sawodny, W. Spectrochim. Acta 1979, 35A, 1347.
 (63) Pimentel, G. C. J. Chem. Phys. 1951, 19, 446.
 (64) Hach, R. J.; Rundle, R. E. J. Am. Chem. Soc. 1951, 73, 4321.
 (65) Rundle, R. E. J. Am. Chem. Soc. 1963, 85, 112.

[^13]: JA003347A

